Drug-induced expression of nonsteroidal anti-inflammatory drug-activated gene/macrophage inhibitory cytokine-1/prostate-derived factor, a putative tumor suppressor, inhibits tumor growth.
نویسندگان
چکیده
A common in vitro response for many chemopreventive and antitumor agents, including some cyclooxygenase inhibitors, is the increased expression of nonsteroidal anti-inflammatory drug-activated gene (NAG)-1/macrophage inhibitory cytokine (MIC)-1/prostate-derived factor (PDF). The experimental anticancer drug 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F203) was a potent inducer of NAG-1 expression, and in MCF-7 cells, it inhibited cell growth and induced apoptosis. NAG-1 small interfering RNA blocked NAG-1 expression and 5F203-induced apoptosis in MCF-7 cells, indicating that NAG-1 may mediate the apoptosis and anticancer activity. One mechanism by which 5F203 increases NAG-1 expression is by increasing the stability of NAG-1 mRNA, dependent of de novo protein synthesis. Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was increased by 5F203, and inhibition of ERK1/2 phosphorylation abolished the induction of NAG-1 protein expression and increased the stability of NAG-1 mRNA. Thus, 5F203 regulates NAG-1 expression by a unique mechanism compared with other drugs. A mouse orthotopic mammary tumor model was used to determine whether 5F203 increased NAG-1 expression in vivo and suppressed tumor growth. Treatment of the mice with Phortress, the prodrug of 5F203, increased the in vivo expression of NAG-1 as measured by real-time reverse transcription-polymerase chain reaction from RNA obtained by needle biopsy, and the expression correlated with a reduction of tumor volume. These results confirm that NAG-1 suppresses tumor growth, and its in vivo expression can be controlled by treating mice with anticancer drugs, such as Phortress. Drugs that target NAG-1 could lead to a unique strategy for the development of chemotherapeutic and chemopreventive agents.
منابع مشابه
The cyclooxygenase inhibitor sulindac sulfide inhibits EP4 expression and suppresses the growth of glioblastoma cells.
EP4 expression in human glioblastoma cells correlates with growth on soft agar. The cyclooxygenase inhibitor sulindac sulfide first altered specificity protein-1 (Sp-1) and early growth response gene-1 expression, then increased the expression of nonsteroidal anti-inflammatory drug-activated gene 1 and activating transcription factor 3, and then decreased EP4 expression. EP4 suppression was dep...
متن کاملSignaling and Regulation NSAID Inhibition of Prostate Cancer Cell Migration Is Mediated by Nag-1 Induction via the p38 MAPK-p75 Pathway
The nonsteroidal anti-inflammatory drugs (NSAID) R-flurbiprofen and ibuprofen have been shown to induce expression of p75 (neurotrophin receptor) in prostate cancer cell lines. p75, a tumor necrosis factor receptor superfamily member, is a proapoptotic protein that functions as a tumor suppressor in the human prostate. Expression of p75 is lost as prostate cancer progresses and is minimal in se...
متن کاملSTAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell
Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...
متن کاملEffects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کاملThe nonsteroidal anti-inflammatory drug tolfenamic acid inhibits BT474 and SKBR3 breast cancer cell and tumor growth by repressing erbB2 expression.
Tolfenamic acid (TA) is a nonsteroidal anti-inflammatory drug that inhibits pancreatic cancer cell and tumor growth through decreasing expression of specificity protein (Sp) transcription factors. TA also inhibits growth of erbB2-overexpressing BT474 and SKBR3 breast cancer cells; however, in contrast to pancreatic cancer cells, TA induced down-regulation of erbB2 but not Sp proteins. TA-induce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 318 2 شماره
صفحات -
تاریخ انتشار 2006